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The stability of rectilinear motion by inertia of slender rigid bodies of revolution in an elastoplastic medium is investigated 
qualitatively. The mathematical model of two-dimensional perturbed motion is based on the isolated-element method and 
hypotheses of flow separation, and reduces to an autonomous system of ordinary differential equations when there are unknown 
boundaries. Lyapunov's method is used to find bifurcation points of the stationary solution both with continuous flow and with 
cavitation with small asymmetrical zones of separation on the lateral surface of the body. © 2000 Elsevier Science Ltd. All rights 
reserved. 

In experiments on the penetration of rigid bodies of revolution into strong media, distortion of the 
trajectory of motion (a rotation of up to 180 °) has been observed. The issue on the stability of motion 
is important for the development of technologies based on the method of dynamic penetration [1, 2] 
but has been studied little only simulation calculations are known [3]. The present paper is based on 
solutions of model problems of the high-velocity elastoplastic flow around bodies [4-7] and on 
experiments [8]. Then, empirical parameters of well known models of local interaction are functionally 
related to the characteristics of the medium and the geometry of the body, which makes it possible to 
isolate additional small quantities and to reduce the number of parameters, in particular, friction does 
not enter into the equations for perturbations. The hypotheses of separation are based on observations 
of the motions of bodies in low-strength media and consist of the assumption that ideal separation occurs 
from the edges of the mid-section (it is observed at low velocities). For non-ideal separation, resulting 
from an increase in velocity and the presence of initial stresses, an empirical angle of separation is 
introduced. 

The stability of rectilinear motion of a body is investigated depending on the portion of the centre 
of mass its cone the angle of separation and the velocity of motion, assuming that the perturbed motion 
is plane-parallel. The limits of the parameters which ensure stability in the case of continuous flow and 
the widening of these limits when asymmetrical small-area zones of separation appear near to the edges, 
corners or smooth points on the body surface are indicated. Configurations that are promising in the 
stability sense and absolutely unstable configurations are described. The model also makes it possible 
to assess the moments of deflection, the lateral forces, the safety margin, etc. 

1. P H Y S I C A L  D E S C R I P T I O N  OF THE P R O B L E M  

A rigid elongated body of revolution moves at high speed inertia in an unbounded isotropic and 
homogeneous elastoplastic medium. As the scale of length in the longitudinal and transverse directions 
we shall adopt the length of the body L and the maximum radius of its cross-section rm, respectively. 
We shall put R = R(I) = r/rm, the dimensionless equation of the generator of the lateral surface of the 
body in a cylindrical coordinate system R, dO, l rigidly connected to the body and with a local rectangular 
coordinate system x = lc - 1, y = R cos dO, z = R sin dO, where l is the distance from the tip of the body, 
and l = lc and R = 0 are the coordinates of the centre of mass. The conditions for the body to be thin 

e=r,,,/L<~l, E[~,~I, ~ = R ' = d R I d l ,  0<1<1  (1.1) 

are considered to be satisfied in almost all cases, with the possible exception of a small neighbourhood 
of the blunt nose part of the body 0 < l < ll ~ 1, where we shall give a separate description. 
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Remark. Bodies tapered at a small angle are not optimum from the viewpoint of strength under the action of 
transverse bending forces. On the other hand, even a sewing needle can be regarded as a blunt body, since its point 
(similar in shape to a paraboloid) is blunt with a characteristic radius --0.1rm. 

At the initial instant of time t = 0, the velocity vector v0 of the centre of mass of the body and the 
angular velocity of rotation 110 about this centre are specified. We shall assume that rotation begins in 
a plane formed by the velocity vector v0 and the body axis there is no yawing or other rotations). Then, 
the trajectories of motion of points of the body will be planar, if it also possessed axial symmetry with 
respect to dynamic properties. 

We shall denote by v = (vx, ~y, 0), f~ = (0, 0, f~), V = v + f~ × (x,y, z) and Vn = nV = e ~  the vectors 
of the current translational, angular and total velocities and the velocity normal to the of the body surface 
where 

~5 = [3 - a cos ¢, a = --COx - r I, co = ~L/(EUr), ri = uy/(au.~) 

The dimensionless functions to and -q--the angular velocity and angle of attack are normalized so 
that they can take values O(1). The mass m of the body will be expressed in terms of the dimensionless 
length of a cylinder of equivalent mass and mid-section and the average density of the body Pl by means 
of the formula rn = ~rr~,,~Llepl. An incompressible medium will be characterized by a density P0, the shear 
modulus ~ and the dynamic von Mises yield stress -r d. For plastically compressible (porous) media it 
can be assumed that the medium was packed at a considerable distance from the body and that P0 is 
its density in the packed state. 

According to known results [5, 6], a plastic zone with a contour-like boundary and a "greater" radius 
~ R ( I )  is formed near the contour of the body. Close to the contour, inte~ase shear flow will be 
observed, with the flow separation from the edges of the rear part, and also, possibly, with separation 
on the lateral surface of the body. 

A cavity retains its shape well in elastoplastic media, and, at low speeds, separation occurs practically 
under a condition of tangency: V, = 0, i.e. ~ = 0. We shall term this condition the criterion of ideal 
separation. When the flow velocity increases and/or when there are considerable initial stresses in the 
medium tr °, this condition is not satisfied. Then, we shall adopt a generalized criterion, according to 
which the lines of separation on the body surface are determined from the condition that the angle 

= V,/(ea~x) should be equal to the critical quantity 13.: 

, Y  = 5 - 13. ( a  ° = o (1.2) 

(8* > 0 means contact, and ~* < 0 means separation). 
With ideal separation 13. = 0. The separation angle 13. increases as the velocity increases and decreases 

as the initial compressive stresses increases (it may become negative). It must be determined from special 
experiments. 

The piercing of a layer of a medium by a sphere with a polished surface can serve as such an 
experiment: the wetted part of the sphere surface will become mat, and, form the position of the 
boundary between the mat and polished surfaces, the angle of separation is determined (this idea is 
due to Yu. K. Bivin). 

Similar empirical models of separation were used earlier in engineering calculations of the non-one- 
dimensional motion of a missile in the ground. 

We shall confine ourselves to considering the conditions when there is no attachment of the jet on 
the surface of the body S. We shall designate the wetting zone by S÷ (~* > 0) and the separation zone 
by, S_ (~* < 0), S = S÷ + S_. The vector of the contact stresses will be determined by the ordinary 
sum of the contributions of the hydrodynamic and strength terms [4-7]: 

a=x. , .n~-a , ,n ,  ~,, =CrPoVe/2+boXd (S+); a = 0  (S_) 

where -r s = const is the plastic friction ('r s ~< "rd) and n~ is the unit tangential vector in the direction of 
slip [in the approximation considered, n~ = ( -  1, 0, 1)]. 

We shall divide the surface S into elements, each of which is approximated by a surface of canonical 
shape (a sphere, a cone or a cylinder), and specify the coefficients Cx and b0, for example, from the 
solutions of model problems of steady flow [4-7] and from experiments [8]. The frontal surface S~_ under 
small perturbations of flow along the axis, will also remain entirely wetted, and on it, as on a unit element, 
Cx = C~_ and b0 = b~. = const. 
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When processing the dynamic penetration tests data [8] it was found that, for cones with semiaperture 
angles of 15-90 °, the coefficient C~_ is similar to the calculated and experimental values in hydrodynamics. 
The quantity b~_ depends extremely weakly on the shape: at the angles of 15-90 ° it changes by 22% and 
differs roughly by one-third from the value of b0 calculated from the formula for the maximum normal 
stress % at the stagnation point of elastoplastic flow around a sphere [7]. Then, the value of b~_ on the 
surface S~_, and also the quantity b0 = be on the shallow part of the wetted lateral surface S/, = S+ -S~_, 
where conditions (1.1) are satisfied ande~ ,~ 1, can be approximated by the formulae [4--7] 

b_L = 4 1 n ~  bf = I n - - - 1  
X d "t d 

For typical values of po/'ra = 102-103, we obtain bf = 5-7 and b~_ = 16-24, so that, in the asymptotic 
sense, we shall assume in what follows that b}, b~ -> 1. According to results obtained in [4-6], on the 
surface Sfwe shall have Cx = C/e282. The coefficient Cf, generally speaking, depends on the geometry 
of the body. Thus, the pressure is non-uniformly distributed along the generator of a thin cone of finite 
length, around which an ideal fluid flows. However, it is equalized in an elastoplastic medium, and there 
are grounds for putting Cf = const and, accordinR to the "tangential cone" method, we can take [6] 
Cf = In (pJ'ra) + 2.55 provided that e~ ~ ('ra/tx)lrr(e~ < 10 -2, i.e. for very small angles of inclination 
of a section of the surface to the flow), or for adopting a value consistent with experiments for clayey 
media--Cf = 2.9 (e8 - 10-1). 

The yield stress "rd is a parameter of the process. Its measured values in dynamic experiments on the 
penetration of bodies into clayey media [8] are only 1.5-3 times higher than the corresponding static 
yield stress whereas behind the shock wave front (or in the elastic forerunner immediately before the 
front) they may differ from this value by an order of magnitude. The cause of the difference in "ra and 
,r~ may be heating up of the medium about the contour from friction or preheating of the body (for 
example, to T > 100°C for ice). 

The above assumptions and estimates are difficult to check directly, so the values of C,,, b0, ra and 
• , must therefore be determined from control experiments. It is important to note that, in the adopted 
model of "angular" separation, the physical condition of the start of contact % = 0 proves not to be 
satisfied. This is the cost of the approximate model of local interaction (either the "tangential cone" 
method, as in aerodynamics, or the isolated element method, as in mathematics). The contradiction 
disappears if % is understood to mean the average value on a surface element of finite length; on the 
other hand, this indicates the need to improve the model. 

We shall introduce additional dimensionless variables and parameters 

? 

c- d ~ v ~.dt s=--r, ;L 
U x 

c 2 2bfxd 21e p = P__gO, j = mL2 

-- 2pocr' ; - -  b-g)-i ' P, I 

where / is the principal moment of inertia of transverse rotation, and × is the ratio of the strength and 
inertial drag forces, which varies during decelerated motion of the body in the range ×0 < × < ~. When 
× ,~ 1, inertia predominates. This is normally the region of supersonic speeds, where the mode employed 
in not always realistic. When × -> 1 it is possible to ignore the effect of inertia. The order of magnitude 
of × is determined not only by the speed but also by the strength of the medium, and it is possible to 
ensure a value of ×0 - 1 for low speeds. For a ground of average dynamic strength ~'d = 5 × 106 Pa 
penetration of a steel cone with an aperture angle of 15 °, the condition × ~ 1 means that V ~ 700 m/s. 

2. M A T H E M A T I C A L  STATEMENT OF THE P R O B L E M  

From the equations of motion of a body in terms of ×, "q, to and ~ it follows that, with certain additional 
constraints on the nature of the blunting, the derivative d×/d~ = o(e2×), i.e. it is asymptotically small, 
whereas the derivatives of the perturbations -q and to are quantities of the order of × with developed 
separation from the lateral surface. This has a clear physical meaning: the generalized lateral drag and 
the moment of the forces Stability of motion of an elongated rigid body of revolution in an elastoplastic 
medium predominate over the axial drag for slender bodies. In the case of continuous flow of a strong 
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medium, as in the case of flow of a liquid around a body, the derivatives -q', co- = O(1) are in the main 
also determined solely by the "hydrodynamic" component of the normal stress Gr,. In the following 
approximations, corrections will appear that take account of the influence of the strength, of the order 
of ×e 2, and they may make the main contribution as × ---) oo. Thus, the equations become invalid for 
describing continuous flow at the final stage of motion, but this will have only a slight effect on the 
main characteristics of motion (the penetration depth and the maximum values of the resulting forces). 
The determination of these corrections involves the solution in an accurate statement of model problems 
of the flow around slender bodies at an angle of attack and during their rotation. 

Consequently, in a limited time interval ~, the variation in × can be ignored compared with the values 
of'q and to: the axial velocity "freezes". Physically, this approximation will be more accurate for "heavy" 
bodies (0 ~ 1), low-strength media and relatively high speeds. Then, the determination of the 
perturbations -q and to reduces to solving the Cauchy problem for an autonomous system of two ordinary 
differential equations 

dq/  d~= frl-~(.o , do3/ d~= jfto; (rl, O~)=(~o,¢O0), ~ = 0  

/ I. (2.1) 
(f~,fo~) = -~ :, (1,1,. -1 )~  Rdl 

In the derivation, terms 0(82) are neglected. The resulting distributed lateral forces ~(/) are 
determined by conditions of the inequality type: 

1. a > ] [3* [--the separation zone is localized about the meridian ~b = 0; 

= 2a~(~-  qb* )+~P, W = 2{×+~ z +a2(2+q2)13-~3~3"}~[l _q2  

~" =arccosq, q = ~ * / a ,  [3"=[5-~. 

2. a > ] 13" ]--separation is localized about the meridian ~b = ~r; @ = 2a13d~* - ~;  
3. lal ~< B*---continuous flow about the parallel: • = 2~r13a; 
4. [a[ ~< -B*--complete  separation along the parallel considered: ~ = 0. 
The right-hand sides of Eqs. (2.1) depend on the parameters ×, ~, l¢ andj  and the body shape R(l). 

Despite linearization with respect to the parameter e, the mathematical model possesses non-trivial 
non-linear properties. The bifurcation points of the trivial solution of these equations -q = to = 0 will 
be determined below. 

3. I N V E S T I G A T I O N  OF STABILITY LOCALLY 

Equations (2.1) will be linear mainly in the vicinity of the singular point ~ = to = 0 if the body contour 
is non-singular: the function B(l) is not identically equal to zero in any range of values of / in  the segment 
[0, 1] and is piecewise-continuously differentiable. According to Lyapunov's method [9], we shall 
investigate the behaviour of solutions of the corresponding linearized system of equation. 

dHId~ = AH, H = ('fl, co), A = Aij 

H = C i exp (kl~) + C2 exp (L2~), ~,t,2 = B + ~ - D 
(3.1) 

where Ci are constant vectors and hi are the roots of the characteristic equation. The nature of the 
solution depends on the invariants of the matrixA 

2B=AlI+A22, D=AllAz2-AI2A2t  

In most of the cases investigated below, B < 0. Then, only the sign of the determinant D is subject 
to analysis. For 0 < D < B 2, both roots hl,2 are negative, and stability is ensured locally (a singular 
point a stable node). When D > B 2, the roots are complex and Re h i < 0 (a stable focus). When 
D < 0, one of the roots is positive (a saddle point)--motion is unstable in the Lyapunov sense. The 
equation D = 0 sefines the stability limits in parameter space. 
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4. T H E  S T A B I L I T Y  C R I T E R I O N  IN T H E  CASE OF C O N T I N U O U S  
F L O W  A R O U N D  L A T E R A L  S U R F A C E  OF A B O D Y  AND W I T H  F L O W  

S E P A R A T I O N  F R O M  T H E  E D G E  

Suppose the critical angle of separation [3. is negative, and the slender body has a strictly monotonically 
increasing radius of cross-section in the direction from the tip of the body to its rear part, and, 
furthermore, suppose the angle of inclination of the generator to the body axis of exceeds the critical 
angle of separation 0 ~< 13. < 13(/). Then, for perturbations so small that 13, t> a, there is a continuous 
flow around complete lateral surface (separation occurs from the rear edge), the strength of the medium 
has no influence on the lateral loads, and the integrals in (2.1) are taken in the explicit form 
Stability of motion of an elongated rigid body of revolution in an elastoplastic medium 

.]~ = -porl  + poo, f o  = Prl + (2lop) - P2 - 1,2 po) ~ 

I 
p =  pl - lcPo,  pi = J lidR 2, i=0 ,1 ,2  

I) 

Equations (2.1) are identical to (3.1) and it can be proved that the following inequalities hold 

Po > Pl > pg_, PoP2 - p2 > 0 :=~ B < 0 (4.1) 

Following the algorithm set out in Section 3, we arrive at the following assertion. 

Assertion 1. In the case of continuous flow around a body with an angle of inclination of the generator 
greater than the critical angle of separation [3. (0 ~< 13. < 13(1)), its rectilinear motion will be Lyapunov 
stable if the distance lc of its centre of mass from the tip of  the body is less than the critical value lg and 
is unstable if lc > lg. The  quantity lg is given by the formula 

/~ = 1 -  {;(P0 - P, )+ p2 _ P2Po} l (~o )  (4.2) 

The dependence of lg on the density ratio is unexpected. Note that this quantity is not the same as the 
distance of  the centre of  pressure from the tip of the body lp, which is given by the formula (the integrals 
were evaluated for the case of a cone) 

fco I flORldl ~lORdl = 3rl - (2 - 31 c)o~ lp  = I r - ~ = II 

as adopted in engineering aerodynamics on the basis of analysis solely of the signs of the moments of 
the forces in the case of a steady flow. Furthermore, the considerable dependence of/e on perturbations 
can be seen from this formula. 

5. T H E  F L O W  S E P A R A T I O N  AT P O I N T S  OF S M O O T H N E S S  OR AT A 
C O R N E R  OF T H E  G E N E R A T O R  

Let the unperturbed motion of a body with a convex contour be characterized by the flow separation 
along the parallel l = lw, 0 < l~ < 1 at points of smoothness of the contour according to the condition 
[3*(lw) = 0, so that the body surface at I < lw (13"(/) > 0) is wetted, while at l > lw (13"(/) < 0) it is stress- 
free. We shall examine small perturbations -q and to such that the maximum displacements of points of 
separation l+ lw and 1_ > lw on the meridians d~ = 0 and "rr in different directions from the unperturbed 
position is also small. These points are related to the perturbations by the equality 13(1_+) - 13, = +a, 
and, by virtue of the condition for the function [3(l) to be small and smooth, we have 

l~(t+) - N t _ )  = 2[( tw - t , . ) o ~ -  n ]  = h(t+ - l_), h =i ~ ' ( tw)  l 

The asymptotically principal part of function • takes the form 

' ' > '  

~ =  l<l+ 

[(~+[3z)~/I-z  2, l+<1<1_; z=( l - l ) , . ) / ( l _ - l , , . )  
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On separation from a comer  l = lw, 0 < l~ ~< 1, the condition 13_ <~ 13. ~< 13+ is satisfied where 
[3_ and 13+ are the angles of inclination of the contour to the left and right of the corner (the flow 
proceeds from right to left with respect to the body). If the inequality is strict, small perturbations do 
not lead to asymmetry of the flow, and the stability analysis in Section 4 holds, taking into account the 
renormalization of the length of the wetted section, When 13. = 13~_, in the one-sided vicinity of the 
comer  it is possible for asymmetrical separation zones to occur for almost any perturbations. Then, in 
the formulae given above, l+ or l_ must be replaced by lw. An additional contribution to the lateral 
force and moment  will be obtained by integrating the expressions in (2.1) with respect to the region 
l+ < l  < l _  

zSfn., , =~/(u,,,o~-rl)(l,-u~,,), ~ = ~  ×+r.fl2 R(/,v)> 0, u~,, =l . , -1 , .  
eh 

where e = 1 when the contour is smooth and, e = 2 in the case of a corner and, accordingly, the left 
or right-hand derivative 13" is taken when determining h. By selecting the initial perturbations, it is 
possible to ensure the length of the zone to be small over a sufficiently long time interval. Then, for a 
body with an angle of  inclination of  the generator such that 0 ~< 13. < 13(/) with 0 < l < lw, Assertion 
1 holds when the critical quantity lg is replaced by 

l, = l~: + ~(p°lw -' pl )(~ + p°lw - pl ) pi = 2ti li R dR 
• ~ o ( q '  + Po)  " ;, 

(5.1) 

where lg is defined in terms of  the new values o f p i  by formula (4.2). Inequalities (4.1) hold when 
renormalization is taken into account, and therefore ls > lg. If  ~ ~ oo and lw ~ 1, then the asymptotics 

l~. --> I + ~-I(p0 + P2 - 2 P l )  > I 

holds and we conclude that, for tO, ~ and lw values such that 

> ~(Po - PJ ) + P~ - PoP2 > 0 
~(I  w - ! ) +  Pol~, 2. + P2 - 2pll , , ,  

the motion is stable for any position of the centre of mass over the length of the body. The growth of 
to and an increase in the margin of stability are ensured by increasing the curvature of the contour at 
separation points and by reducing the axial velocity (stabilization with an increase in the effect of strength 
forces, × ---> 0). Cavitation reduces the drag considerably, stabilizes the axial velocity and increases the 
path length are to the reduction in the areas of the mid-section and the wetted surface. However, for 
any fixed ~ we have ls --~ 0 if lw ---> 0. From this it follows that control of the stability by changing the 
parameter tO becomes less effective as cavitation develops, and when there is complete separation from 
the flunted (but smooth) tip of the body and lc > 11, the state of the dynamical system proves to be 
unstable irrespective of the values of the other parameters. 

It can be shown that stricter allowance for the asymmetry of the flow around the nose part of the 
body is then necessary. However, a comparative analysis reveals that the ratio of  the moment of the 
axial force about the centre of mass Ma to the moment of  the lateral forces M, caused by the asymmetry 
of the separation, is a quantity of the order eR1, where it is assumed that the magnitude of the 
displacement of the point of application of the force along the y axis d = d,l-q, where d n =  O(1). 
Consequently, for elongated and smooth bodies, the asymmetry of the flow around the blunted nose 
part can be neglected compared with the effects of the flow around the lateral surface. When the flow 
separation occurs from a comer  in the generator close to the nose part of the body, such an analysis 
becomes necessary. 

For numerical estimates when lw = 1 wee shall use the inequalities 

O < p . < l ,  0<p1<213 ,  0 < p 2 < 1 / 2 ,  I / 3< / c< l  

where extreme values are achieved for a cone and for a cylinder. In the case of continuous flow, in the 
range of values of relative density 0 < p < 1, the following ranges of variation in lg correspond to them 

0<l~,<2[3+Z/18,  O < Z < 4 ,  Z=~-z ;  2/3<lg<X/9 (cone) 
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Taking into account the effect of separation in the rear part of the body contour, we obtain 

~(I  + X)/(l + ~)  < I, < 1 + Z/6 - (I/3 + %/9)/(1 + gt) 

Neither a cone nor a cylinder is a body for which the small asymmetrical separation zones occur- 
flow separation begins immediately over sections of great length. For a cone with 130 > 13., the analysis 
carried out in Section 4 holds and indicates that the motion of a homogeneous slender "heavy" 
(p ~< 0.4) cone is unstable because l~ = 3/4, lg and = 2/3 + X/18. When 130 = 13-, large separation zones 
are formed and numerical calculations are necessary; when 130 < 13,, as is generally the case for non- 
convex generators, an apparent paradox arises: according to the criterion of separation, the pointed 
nose part of the body is not wetted by the medium. This paradox is removed if it is recognized that it 
is a consequence of the roughness of the adopted "first-approximation" model, and, as the next step, 
it is necessary to introduce the dependence of the critical angle on the curvature of the generator of 
the body of revolution, and,  in this context, to assume that this dependence is taken into account implicity 
(by the averaging method) and for each specific body the value of 13. is constant. 

It can be shown that a cylinder is an absolutely stable shape, irrespective of the position of the centre 
of mass. 

A body formed by revolution of part of a parabola is the simplest case in which the flow with a small 
separation zone is allowed. Thus, when separation occurs from the edge (see Fig. 1; the shadow zone 
is shown hatched) 

~ = ~ o - h g = 2 - ~ . - 2 ( l - ~ . ) l ;  13,~>0, h > 0 ~ 0 ~ < ~ . < l ;  R(0)=O, R(I)=I  

we obtain 

1~=l~+;1~8d1+%8~1, It, e l - 8  I+Z(8~-28~+82)  

, ×+~.2 8 I = l - p l  = -P2  " 
~'= ×+2-213.  +~ .  2 '  5 [  6 2 j 3110 5 

× .~< %.< I, I 8 I I1 
× + 2  ~<8,~<--,15 2 < ' 5 2 ~ < ~ "  0~13,<1 

Numerical example: lg = 0.484 and l~ = 0.696 with 13. = 0, ~ = 2.768 and × = 1, which indicates the 
importance of the effect of separation in determining the critical values. Furthermore, they depend on 
the axial velocity vx so that in the range 0 < Vx < oo with 13. ,~ 1 there is a certain range of 1~ values: 
0 < 1. < 1, < 1..  < 1. When the velocity increases, the values of ×, ~ and l~ decrease. Consequently, if 
the centre of mass of the body is positioned so that 1. < lc < l**, there is a critical velocity v.(lc) such 
that, when v~ > v., lc will be greater than l~(vx) and the motion will be unstable, when v~ < v., the opposite 
assertion holds. 

Preliminary analysis indicates the existence of other stable conditions of motion on passing through 
the critical values @ > l~, Ig). The limiting condition l~ = l, means that the motion rapidly settles in the 
mode to = to. and ~ = ~q., where to. and ~1. are constants. The trajectory of this motion is a circle of 
large radius. If lc > 1~, the perturbations increase exponentially, and the stable trajectory will be a twisting 
spiral. The number of stable modes changes: the direction of rotation in the plane may be different. 
Consequently, the critical values 1~ and lg are bifurcation points. It is qualitatively clear to what extent 
these conclusions will remain valid when examining decelerated motion in the direction of the body 
axis. Thus, in principle it is possible to design bodies (penetrators) moving along certain prescribed 
curvilinear trajectories. 

Vx 

Fig. 1. 
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6. A P R O F I L E  W I T H  S E V E R A L  S M A L L  S E P A R A T I O N  Z O N E S  

For non-convex bodies and/or bodies with special corner points one or simultaneously several 
asymmetrical separation zones can appear in the vicinities of a corner or a point of inflection of the 
generator with arbitrarily small perturbations at points l = 11 ~< lw <~ 1, i = 2, 3 . . . .  , i0 (edges 
i = 0, 1 can be included), where t~ = dh, In the approximation of infinitesimal separation zones, it is 
possible to obtain the contribution of additional forces by the superposition method 

Ail = - A  o, A22 = AI - ~ - I c A o ,  AN2 = At - l c A o ,  A,I_2 = 21cAI - A2 - 1 c A  ~ 

I]1 ~ Ak = P~. + ~'. lik ~g i, Pk =2 RdR, k=0,1 .2  
i 0 

and to prove the inequality B < 0, if 13(0 ~> 0. Assertion 1 holds, while the critical length is expressed 
by the formula 

l, = (~A0) -] (AoA 2 - A I + ~2A I ) 

The result extends to cases of angles of separation 13. < 0 and more general configurations, while 
the invariant B < 0. Analysis indicates that, the closer the separation zone is to the nose of the body, 
the smaller the increase in the stability margin, or it becomes negative. Thus, in the case of complete 
wetting, with the exception of a small asymmetrical zone in the vicinity of the tip 1 = I a ~ 0, we shall 
have 

l , . = l ~ -  ~gl(~- Pt) 
• ' ~ 0 ( ¥ ,  + p o )  

In typical cases (4 > Pa) the stability margin decreases compared with a scheme of continuous flow. 
For "light" bodies (4 < P 0  the opposite conclusion holds. 

If 13(/) < 13., separation from the lateral surface begins only for finite perturbations lying outside a 
certain vicinity of the point H = 0. Then the stability margin, calculated by the scheme of continuous 
flow, is not changed even when small separation zones arise, since the additional (non-linear) terms 
governed by this effect on the right-hand sides of Eqs (3.1) prove to be smallest in order of magnitude. 

7. A C E N T R A L L Y  S Y M M E T R I C A L  C O N T O U R  

Retaining the inequality 13' ~< 0, we shall examine the motion of a body whose radius of cross-section 
in the direction from the tip of the body initially increases monotonically and then decreases 
monotonically, and the flow will be continuous if 13. ~< min 13(/) = 131 < 0. In this case, the inequality 
B < 0 can break down and qualitatively different situations can arise. Thus, for a centrally symmetrical 
convex contour 

R ( I ) = R ( I - I ) ,  p , = 0 ,  p l = p 2 = - P < O  

when the conditions 13. <~ 131, R1 = 0 (a pointed body) and 13, < 131, R1 > 0 (a blunted body) (7.1) are 
satisfied a vicinity of the point rl = ~ = 0 exists such that separation either does not arise or is 
insignificant. Then 

2B = jp(1 - 2/,.), D = - j p ( ~  + P) < 0 

In the case of the start of separation from the blunted rear edge with 13. = [31, we have 

2B = jp (  1 - 2l,.) - V( 1 + l;. 2), 

u,.= 1-1,., ~ =  2~'(ljRl 

D = - j p ( ~  + P) + ~(~u,.  + P) 

The following assertion follows from the results of the stability analysis (Section 3). 

Asser t ion  2. Rectilinear motion of an elongated geometrically centrally symmetrical body, under 
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conditions of  continuous flow (7.1), is Lyaponov unstable (an unstable focus) irrespective of  the position 
of the centre of  mass over the length of the body. When separation occurs on the lateral surface, different 
situations are possible. Thus, in the case of  separat ion f rom the rear edge (13. = 131, R1 > 0) for small 
values of  the pa ramete r  ~ (0 < ~ < P)  the instability indicated above is retained; if P < ~ < P + [, 
then, f rom the condition D = 0, the critical value ls is determined and Assertion 1 holds; when 

> (P + ~) rectilinear mot ion is stable for any position of the centre of  mass over the length of  the 
body. 

The strength of the medium is unimportant  when analysing the stability of  motion of slender bodies 
under  conditions of continuous flow, and consequently Assertion 2 relates to the motion of bodies in 
an inviscid fluid. Therefore ,  shape asymmetry of creatures for which motion in water  is an important  
condition for their existence is due to the need to ensure stability of  rectilinear motion by inertia. 

For  the op t imum design of bodies, a useful conclusion is that maximum stability margin as achieved 
by convex bodies strictly monotonically increasing radius in the direction f rom the tip of  the body to 
the rear edge, where the generator  should have an angle of  inclination to the body axis that is similar 
to the average angle of  separat ion for the trajectory of motion and a small (but non-zero) curvature. 
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